Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadj9797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427739

RESUMO

We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.


Assuntos
Etilnitrosoureia , Camundongos , Animais , Pressão Sanguínea/genética , Frequência Cardíaca/genética , Mutagênese , Etilnitrosoureia/toxicidade , Alelos
2.
Cell Metab ; 35(3): 429-437.e5, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889282

RESUMO

Animals that consume fermenting fruit and nectar are at risk of exposure to ethanol and the detrimental effects of inebriation. In this report, we show that the hormone FGF21, which is strongly induced by ethanol in murine and human liver, stimulates arousal from intoxication without changing ethanol catabolism. Mice lacking FGF21 take longer than wild-type littermates to recover their righting reflex and balance following ethanol exposure. Conversely, pharmacologic FGF21 administration reduces the time needed for mice to recover from ethanol-induced unconsciousness and ataxia. FGF21 did not counteract sedation caused by ketamine, diazepam, or pentobarbital, indicating specificity for ethanol. FGF21 mediates its anti-intoxicant effects by directly activating noradrenergic neurons in the locus coeruleus region, which regulates arousal and alertness. These results suggest that this FGF21 liver-brain pathway evolved to protect against ethanol-induced intoxication and that it might be targeted pharmaceutically for treating acute alcohol poisoning.


Assuntos
Intoxicação Alcoólica , Humanos , Animais , Camundongos , Etanol/toxicidade , Fatores de Crescimento de Fibroblastos/metabolismo , Encéfalo/metabolismo
3.
Cell Metab ; 34(11): 1860-1874.e4, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228616

RESUMO

Using random germline mutagenesis in mice, we identified a viable hypomorphic allele (boh) of the transcription-factor-encoding gene Ovol2 that resulted in obesity, which initially developed with normal food intake and physical activity but decreased energy expenditure. Fat weight was dramatically increased, while lean weight was reduced in 12-week-old boh homozygous mice, culminating by 24 weeks in massive obesity, hepatosteatosis, insulin resistance, and diabetes. The Ovol2boh/boh genotype augmented obesity in Lepob/ob mice, and pair-feeding failed to normalize obesity in Ovol2boh/boh mice. OVOL2-deficient mice were extremely cold intolerant. OVOL2 is essential for brown/beige adipose tissue-mediated thermogenesis. In white adipose tissues, OVOL2 limited adipogenesis by blocking C/EBPα engagement of its transcriptional targets. Overexpression of OVOL2 in adipocytes of mice fed with a high-fat diet reduced total body and liver fat and improved insulin sensitivity. Our data reveal that OVOL2 plays dual functions in thermogenesis and adipogenesis to maintain energy balance.


Assuntos
Adipogenia , Resistência à Insulina , Camundongos , Animais , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Termogênese/genética , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica , Resistência à Insulina/genética , Metabolismo Energético/genética , Mutação , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 119(18): e2200128119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482923

RESUMO

Null mutations of spliceosome components or cofactors are homozygous lethal in eukaryotes, but viable hypomorphic mutations provide an opportunity to understand the physiological impact of individual splicing proteins. We describe a viable missense allele (F181I) of Rnps1 encoding an essential regulator of splicing and nonsense-mediated decay (NMD), identified in a mouse genetic screen for altered immune cell development. Homozygous mice displayed a stem cell­intrinsic defect in hematopoiesis of all lineages due to excessive apoptosis induced by tumor necrosis factor (TNF)­dependent death signaling. Numerous transcript splice variants containing retained introns and skipped exons were detected at elevated frequencies in Rnps1F181I/F181I splenic CD8+ T cells and hematopoietic stem cells (HSCs), but NMD appeared normal. Strikingly, Tnf knockout rescued all hematopoietic cells to normal or near-normal levels in Rnps1F181I/F181I mice and dramatically reduced intron retention in Rnps1F181I/F181I CD8+ T cells and HSCs. Thus, RNPS1 is necessary for accurate splicing, without which disinhibited TNF signaling triggers hematopoietic cell death.


Assuntos
Linfócitos T CD8-Positivos , Ribonucleoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoese/genética , Homozigoto , Mamíferos/metabolismo , Camundongos , Receptores do Fator de Necrose Tumoral/metabolismo , Ribonucleoproteínas/metabolismo , Deleção de Sequência , Fatores de Necrose Tumoral/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260399

RESUMO

Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation-phenotype association. At this time, CE has evaluated putative mutation-phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.


Assuntos
Mutação em Linhagem Germinativa/genética , Leucócitos/metabolismo , Aprendizado de Máquina , Meiose/genética , Algoritmos , Animais , Automação , Feminino , Citometria de Fluxo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Probabilidade , Reprodutibilidade dos Testes , Software
6.
Allergy ; 76(4): 1095-1108, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810290

RESUMO

BACKGROUND: Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS: We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS: Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS: Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.


Assuntos
Hipersensibilidade Imediata , Imunoglobulina E , Alérgenos , Animais , Imunoglobulina G , Camundongos , Mutação
7.
Nat Immunol ; 20(10): 1322-1334, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31427773

RESUMO

We report a new immunodeficiency disorder in mice caused by a viable hypomorphic mutation of Snrnp40, an essential gene encoding a subunit of the U5 small nuclear ribonucleoprotein (snRNP) complex of the spliceosome. Snrnp40 is ubiquitous but strongly expressed in lymphoid tissue. Homozygous mutant mice showed hypersusceptibility to infection by murine cytomegalovirus and multiple defects of lymphoid development, stability and function. Cell-intrinsic defects of hematopoietic stem cell differentiation also affected homozygous mutants. SNRNP40 deficiency in primary hematopoietic stem cells or T cells or the EL4 cell line increased the frequency of splicing errors, mostly intron retention, in several hundred messenger RNAs. Altered expression of proteins associated with immune cell function was also observed in Snrnp40-mutant cells. The immunological consequences of SNRNP40 deficiency presumably result from cumulative, moderate effects on processing of many different mRNA molecules and secondary reductions in the expression of critical immune proteins, yielding a syndromic immune disorder.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Infecções por Herpesviridae/imunologia , Síndromes de Imunodeficiência/imunologia , Muromegalovirus/fisiologia , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo , Linfócitos T/fisiologia , Alelos , Animais , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Suscetibilidade a Doenças , Infecções por Herpesviridae/genética , Síndromes de Imunodeficiência/genética , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética
8.
Science ; 364(6440)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31073040

RESUMO

Precise control of Wnt signaling is necessary for immune system development. In this study, we detected severely impaired development of all lymphoid lineages in mice, resulting from an N-ethyl-N-nitrosourea-induced mutation in the limb region 1-like gene (Lmbr1l), which encodes a membrane-spanning protein with no previously described function in immunity. The interaction of LMBR1L with glycoprotein 78 (GP78) and ubiquitin-associated domain-containing protein 2 (UBAC2) attenuated Wnt signaling in lymphocytes by preventing the maturation of FZD6 and LRP6 through ubiquitination within the endoplasmic reticulum and by stabilizing "destruction complex" proteins. LMBR1L-deficient T cells exhibited hallmarks of Wnt/ß-catenin activation and underwent apoptotic cell death in response to proliferative stimuli. LMBR1L has an essential function during lymphopoiesis and lymphoid activation, acting as a negative regulator of the Wnt/ß-catenin pathway.


Assuntos
Linfopoese/genética , Receptores de Superfície Celular/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Superfície Celular/genética
9.
Proc Natl Acad Sci U S A ; 115(49): E11523-E11531, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442666

RESUMO

The SMCR8-WDR41-C9ORF72 complex is a regulator of autophagy and lysosomal function. Autoimmunity and inflammatory disease have been ascribed to loss-of-function mutations of Smcr8 or C9orf72 in mice. In humans, autoimmunity has been reported to precede amyotrophic lateral sclerosis caused by mutations of C9ORF72 However, the cellular and molecular mechanisms underlying autoimmunity and inflammation caused by C9ORF72 or SMCR8 deficiencies remain unknown. Here, we show that splenomegaly, lymphadenopathy, and activated circulating T cells observed in Smcr8-/- mice were rescued by triple knockout of the endosomal Toll-like receptors (TLRs) TLR3, TLR7, and TLR9. Myeloid cells from Smcr8-/- mice produced excessive inflammatory cytokines in response to endocytosed TLR3, TLR7, or TLR9 ligands administered in the growth medium and in response to TLR2 or TLR4 ligands internalized by phagocytosis. These defects likely stem from prolonged TLR signaling caused by accumulation of LysoTracker-positive vesicles and by delayed phagosome maturation, both of which were observed in Smcr8-/- macrophages. Smcr8-/- mice also showed elevated susceptibility to dextran sodium sulfate-induced colitis, which was not associated with increased TLR3, TLR7, or TLR9 signaling. Deficiency of WDR41 phenocopied loss of SMCR8. Our findings provide evidence that excessive endosomal TLR signaling resulting from prolonged ligand-receptor contact causes inflammatory disease in SMCR8-deficient mice.


Assuntos
Proteína C9orf72/metabolismo , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Toll-Like/metabolismo , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Proteínas Relacionadas à Autofagia , Proteína C9orf72/genética , Proteínas de Transporte/genética , Colite/induzido quimicamente , Sulfato de Dextrana , Regulação da Expressão Gênica , Hematopoese/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais/imunologia , Receptores Toll-Like/genética
10.
Dis Model Mech ; 11(9)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30279225

RESUMO

Myosin ID (MYO1D) is a member of the class I myosin family. We screened 48,649 third generation (G3) germline mutant mice derived from N-ethyl-N-nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). We found and validated mutations in Myo1d as a cause of increased susceptibility to DSS-induced colitis. MYO1D is produced in the intestinal epithelium, and the colitis phenotype is dependent on the nonhematopoietic compartment of the mouse. Moreover, MYO1D appears to couple cytoskeletal elements to lipid in an ATP-dependent manner. These findings demonstrate that MYO1D is needed to maintain epithelial integrity and protect against DSS-induced colitis.


Assuntos
Colite/metabolismo , Colite/prevenção & controle , Lipídeos de Membrana/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Diferenciação Celular , Colite/genética , Colite/patologia , Sulfato de Dextrana , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Genes Recessivos , Hematopoese , Mucosa Intestinal/patologia , Intestinos/patologia , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo , Reprodutibilidade dos Testes
11.
Curr Microbiol ; 75(1): 11-19, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28852850

RESUMO

Triterpenoid saponin derivatives oleanolic acid (OA) and ursolic acid (UA), but not betulinic acid (BA), were previously found to have strong antimicrobial activity against Streptococcus mutans. OA and UA inhibited the transcription of genes related to peptidoglycan biosynthesis, thereby preventing bacterial growth. However, it is not clear whether this is the only pathway involved in the antimicrobial activity of these compounds against S. mutans. Therefore, we used quantitative real-time PCR (qPCR) and microarray analyses to examine the expression of genes related to essential metabolic pathways in S. mutans UA159 following incubation with OA, UA, or BA. An oligonucleotide array consisting of 5363 probes was designed to survey 1928 of the 1963 genes in the genome of S. mutans UA159. Genes that showed >2-fold changes in expression in response to the treatment conditions were annotated, and selected target genes involved in central metabolism were analyzed by qPCR. Microarray analysis confirmed that the gene expression patterns of the OA- and UA-treated cells differed from that of the BA-treated culture, indicating differences in the antimicrobial mechanism. In particular, the expression of pfk and pykF, coding for glycolysis regulatory proteins phosphofructokinase and pyruvate kinase, respectively, were significantly decreased in the OA and UA groups (P < 0.05), as were genes involved in fatty acid and amino acid synthesis. In addition, the microarray analysis confirmed previous qPCR results showing that peptidoglycan synthesis is down-regulated in the OA- and UA-treated groups. OA and UA also appear to decrease the generation of organic acids by S. mutans UA159, which would have an anticaries effect. Overall, these findings suggest that OA and UA affect multiple genes involved in the central metabolism of S. mutans, with inhibition of glycolysis, fatty acid synthesis, amino acid synthesis, and peptidoglycan synthesis, all contributing to their antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Ácido Oleanólico/farmacologia , Streptococcus mutans/efeitos dos fármacos , Triterpenos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Triterpenos Pentacíclicos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Ácido Betulínico
12.
RSC Adv ; 8(63): 36313-36322, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558447

RESUMO

The large-area membrane-electrode assembly (MEA) has been fabricated using the decal transfer method with a methanol (MeOH)-based PtRu/C catalyst slurry. The stability of slurry dispersion is important when using a large-area decal transfer method to ensure the integrity of the electrode. In order to prepare stable and well dispersed catalyst slurry, a suitable solvent for the PtRu/C catalyst should be selected. We considered the physical properties of various organic solvents, including ionomer solubility, dielectric constant, and catalyst particle surface physical properties. We found that the MeOH-based PtRu/C slurry dispersion showed the best stability and dispersibility of catalyst-ionomer agglomerates. It was also confirmed that the MeOH-based slurry has the most suitable characteristics for coating the slurry on the substrate film. The decal technique-based MEA using this slurry showed excellent performance when compared with the spray method-based MEA. Furthermore, the large-area PtRu/C MEA with an active area of 51.84 cm2 was fabricated and excellent performance was realized even when a reforming gas was used.

13.
Photomed Laser Surg ; 35(9): 505-512, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28792860

RESUMO

PURPOSE: Minimally invasive treatments for early breast cancer have been reported. The objective of this study was to evaluate and compare two such treatments, laser ablation and photodynamic therapy (PDT), regarding their therapeutic efficacy for breast cancer. METHODS: Breast tumors were induced in 12 mice models. The treatment options were classified into four groups: control group (without any treatment, A), group treated only with laser ablation (B), group treated only with PDT (C), and group treated with the combination of laser ablation followed by PDT (D). The treatment effects were compared among these groups. RESULTS: Among the groups, the group D underwent the most effective treatment for breast cancer. Not only were the breast cancer cells necrotized by laser ablation, but the tumor margin was also managed by PDT. CONCLUSIONS: The treatment method combining laser ablation and PDT showed superior results to single treatment techniques using just one of these approaches.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Terapia a Laser/métodos , Fotoquimioterapia/métodos , Animais , Biópsia por Agulha , Terapia Combinada , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/farmacologia , Projetos Piloto , Distribuição Aleatória , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Proc Natl Acad Sci U S A ; 114(26): E5197-E5206, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607088

RESUMO

The recessive N-ethyl-N-nitrosourea-induced phenotype toku is characterized by delayed hair growth, progressive hair loss, and excessive accumulation of dermal cholesterol, triglycerides, and ceramides. The toku phenotype was attributed to a null allele of Gk5, encoding glycerol kinase 5 (GK5), a skin-specific kinase expressed predominantly in sebaceous glands. GK5 formed a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. In Gk5toku/toku mice, transcriptionally active SREBPs accumulated in the skin, but not in the liver; they were localized to the nucleus and led to elevated lipid synthesis and subsequent hair growth defects. Similar defective hair growth was observed in kinase-inactive GK5 mutant mice. Hair growth defects of homozygous toku mice were partially rescued by treatment with the HMG-CoA reductase inhibitor simvastatin. GK5 exists as part of a skin-specific regulatory mechanism for cholesterol biosynthesis, independent of cholesterol regulation elsewhere in the body.


Assuntos
Glicerol Quinase/metabolismo , Lipídeos/biossíntese , Processamento de Proteína Pós-Traducional , Pele/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Glicerol Quinase/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Domínios Proteicos , Sinvastatina/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética
15.
Proc Natl Acad Sci U S A ; 113(42): E6418-E6426, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27708159

RESUMO

We describe a metabolic disorder characterized by lipodystrophy, hepatic steatosis, insulin resistance, severe diabetes, and growth retardation observed in mice carrying N-ethyl-N-nitrosourea (ENU)-induced mutations. The disorder was ascribed to a mutation of kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) and was mimicked by a CRISPR/Cas9-targeted null allele of the same gene. Kbtbd2 encodes a BTB-Kelch family substrate recognition subunit of the Cullin-3-based E3 ubiquitin ligase. KBTBD2 targeted p85α, the regulatory subunit of the phosphoinositol-3-kinase (PI3K) heterodimer, causing p85α ubiquitination and proteasome-mediated degradation. In the absence of KBTBD2, p85α accumulated to 30-fold greater levels than in wild-type adipocytes, and excessive p110-free p85α blocked the binding of p85α-p110 heterodimers to IRS1, interrupting the insulin signal. Both transplantation of wild-type adipose tissue and homozygous germ line inactivation of the p85α-encoding gene Pik3r1 rescued diabetes and hepatic steatosis phenotypes of Kbtbd2-/- mice. Kbtbd2 was down-regulated in diet-induced obese insulin-resistant mice in a leptin-dependent manner. KBTBD2 is an essential regulator of the insulin-signaling pathway, modulating insulin sensitivity by limiting p85α abundance.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Dieta/efeitos adversos , Predisposição Genética para Doença , Resistência à Insulina , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/transplante , Animais , Glicemia , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Culina/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Insulina/sangue , Resistência à Insulina/genética , Lipodistrofia/etiologia , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Obesidade/etiologia , Obesidade/patologia , Fenótipo , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Ubiquitinação
16.
J Control Release ; 209: 12-9, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25872152

RESUMO

Methylene blue (MB), a water-soluble cationic dye widely used in the clinic, is known to photosensitize the generation of cytotoxic singlet oxygen efficiently, and thus, has attracted interest as a potential drug for photodynamic therapy (PDT). However, its use for the in vivo PDT of cancer has been limited due to the inherently poor cell/tissue accumulation and low biological stability in the free molecular form. Here, we report a simple and biocompatible nanocomplex formulation of MB (NanoMB) that is useful for in vivo locoregional cancer treatment by PDT. NanoMB particles were constructed through the self-assembly of clinically usable molecules (MB, fatty acid and a clinically approved polymer surfactant) directed by the dual (electrostatic and hydrophobic) interactions between the ternary constituents. The nanocomplexed MB showed greatly enhanced cell internalization while keeping the photosensitization efficiency as high as free MB, leading to distinctive phototoxicity toward cancer cells. When administered to human breast cancer xenograft mice by peritumoral injection, NanoMB was capable of facile penetration into the tumor followed by cancer cell accumulation, as examined in vivo and histologically with the near-infrared fluorescence signal of MB. The quintuple PDT treatment by a combination of peritumorally injected NanoMB and selective laser irradiation suppressed the tumor volume efficaciously, demonstrating potential of NanoMB-based PDT as a biocompatible and safe method for adjuvant locoregional cancer treatment.


Assuntos
Azul de Metileno , Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Luz , Azul de Metileno/administração & dosagem , Azul de Metileno/química , Azul de Metileno/uso terapêutico , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/patologia , Ácido Oleico/química , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Poloxâmero/química , Oxigênio Singlete/química , Tensoativos/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Genet ; 47(5): 512-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25848748

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.


Assuntos
DNA Helicases/genética , Exoma/genética , Exorribonucleases/genética , Fibrose Pulmonar Idiopática/genética , Encurtamento do Telômero , Telômero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Estudos de Casos e Controles , Células Cultivadas , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/patologia , Leucócitos/fisiologia , Escore Lod , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem
18.
Caries Res ; 49(1): 78-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25531232

RESUMO

The objective of the study was to investigate the antimicrobial effects of purified single compounds from ethanol-extracted licorice root on Streptococcus mutans. The crude licorice root extract (CLE) was obtained from Glycyrrhiza uralensis, which was subjected to column chromatography to separate compounds. Purified compounds were identified by mass spectrometry and nuclear magnetic resonance. Antimicrobial activities of purified compounds from CLE were evaluated by determining the minimum inhibitory concentration and by performing time-kill kinetics. The inhibitory effects of the compounds on biofilm development were evaluated using crystal violet assay and confocal microscopy. Cell toxicity of substances to normal human gingival fibroblast (NHGF) cells was tested using a methyl thiazolyl tetrazolium assay. Chlorhexidine digluconate (CHX) was used in the control group. Three antimicrobial flavonoids, 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein, were isolated from the CLE. We found that the three flavonoids and CHX had bactericidal effects on S. mutans UA159 at the concentration of ≥4 and ≥1 µg/ml, respectively. The purified compounds completely inhibited biofilm development of S. mutans UA159 at concentrations over 4 µg/ml, which was equivalent to 2 µg/ml of CHX. Confocal analysis showed that biofilms were sparsely scattered in the presence of over 4 µg/ml of the purified compounds. However, the three compounds purified from CLE showed less cytotoxic effects on NHGF cells than CHX at these biofilm-inhibitory concentrations. Our results suggest that purified flavonoids from CLE can be useful in developing oral hygiene products, such as gargling solutions and dentifrices for preventing dental caries.


Assuntos
Anti-Infecciosos/farmacologia , Benzofuranos/farmacologia , Benzopiranos/farmacologia , Genisteína/análogos & derivados , Glycyrrhiza uralensis , Extratos Vegetais/farmacologia , Streptococcus mutans/efeitos dos fármacos , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos Locais/farmacologia , Benzopiranos/administração & dosagem , Biofilmes/efeitos dos fármacos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Fibroblastos/efeitos dos fármacos , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Genisteína/administração & dosagem , Genisteína/farmacologia , Violeta Genciana , Gengiva/citologia , Gengiva/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Microscopia Confocal , Extratos Vegetais/administração & dosagem , Raízes de Plantas , Streptococcus sobrinus/efeitos dos fármacos , Sais de Tetrazólio , Tiazóis
19.
Genome Announc ; 1(5)2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24158551

RESUMO

The genus Peptoniphilus comprises butyrate-producing, nonsaccharolytic species that use peptone and amino acids as major energy sources. The novel Peptoniphilus sp. strain ChDC B134 (=KCOM 1628) was isolated from a human periapical abscess lesion. Here, we report the draft genome sequence of the strain.

20.
Neuropeptides ; 47(5): 329-32, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23899497

RESUMO

Peptide YY (PYY) is a peptide hormone secreted from L cells in the intestine in response to food intake that regulates appetite and gastrointestinal function. PYY is also produced in the pancreatic islets. The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D3 that regulates numerous physiological processes. VDR is expressed in the pancreatic islets and pharmacological VDR activation increases PYY expression in mouse peripheral islet cells. Although VDR is present in insulin-producing ß cells as well as non-ß cells, the role of ß cell VDR in Pyy transcription remains unknown. We treated mice with streptozotocin to ablate ß cells in the pancreas. Pancreatic Vdr mRNA expression was decreased in streptozotocin-induced diabetic mice. Interestingly, streptozotocin-treated mice exhibited increased basal Pyy expression and 1α-hydroxyvitamin D3 treatment further increased expression. Moreover, 1α-hydroxyvitamin D3 increased mRNA expression of pancreatic polypeptide and decreased that of neuropeptide Y in streptozotocin-induced diabetic mice but not in control mice. 1α-Hydroxyvitamin D3 slightly increased mRNA expression of insulin but transcript levels were nearly undetectable in the pancreas of streptozotocin-treated mice. Thus, VDR in non-ß islet cells is involved in Pyy expression in the mouse pancreas. The findings from this ß cell ablation study suggest a hormone transcription regulatory network composed of ß cells and non-ß cells.


Assuntos
Diabetes Mellitus Experimental/genética , Hidroxicolecalciferóis/farmacologia , Células Secretoras de Insulina/metabolismo , Peptídeo YY/genética , Receptores de Calcitriol/genética , Transcrição Gênica , Animais , Diabetes Mellitus Experimental/metabolismo , Hidroxicolecalciferóis/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Peptídeo YY/metabolismo , RNA Mensageiro/metabolismo , Receptores de Calcitriol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...